

Canal Current

A wave of information for Cape Coral's Canalwatch volunteers

Newsletter: 3rd Quarter 2015

Environmental News

Non-Native Plant profile

Swales

Swales are engineered water retention areas designed to buffer stormwater runoff, and convey stormwater to nearby canals.

Stormwater runoff flows to swales from streets and lawns; the water that is retained in the swale is then "filtered" by the groundcover, such as grass. Swales are periodically re-graded by the City of Cape Coral's Services Division to ensure its functioning properly for flood control. Once re-graded, sod is used to line the swales to prevent sediment erosion.

Homeowners can help the city maintain swales by following some common sense tips:

Don't park vehicles in swale areas (also applies to vacant lots). Damaging the vegetation can lead to soil erosion.

Keep the swale and storm drain area free of debris such as trash, leaves or sticks. This could impede flow and create a flood hazard.

Use fertilizers and pesticides sparingly (if at all) in swale areas. The swale is designed to buffer these chemicals, preventing them from reaching the canal waterways.

Never plant anything other than groundcovers in the swale. Trees and shrubs planted in the swale may be removed or damaged when regrading occurs.

Questions? Comments? Let us know!

(239)574-0785

Harry: hphillips@capecoral.net Katie: kmcbride@capecoral.net

Common Lantana

Lantana camara

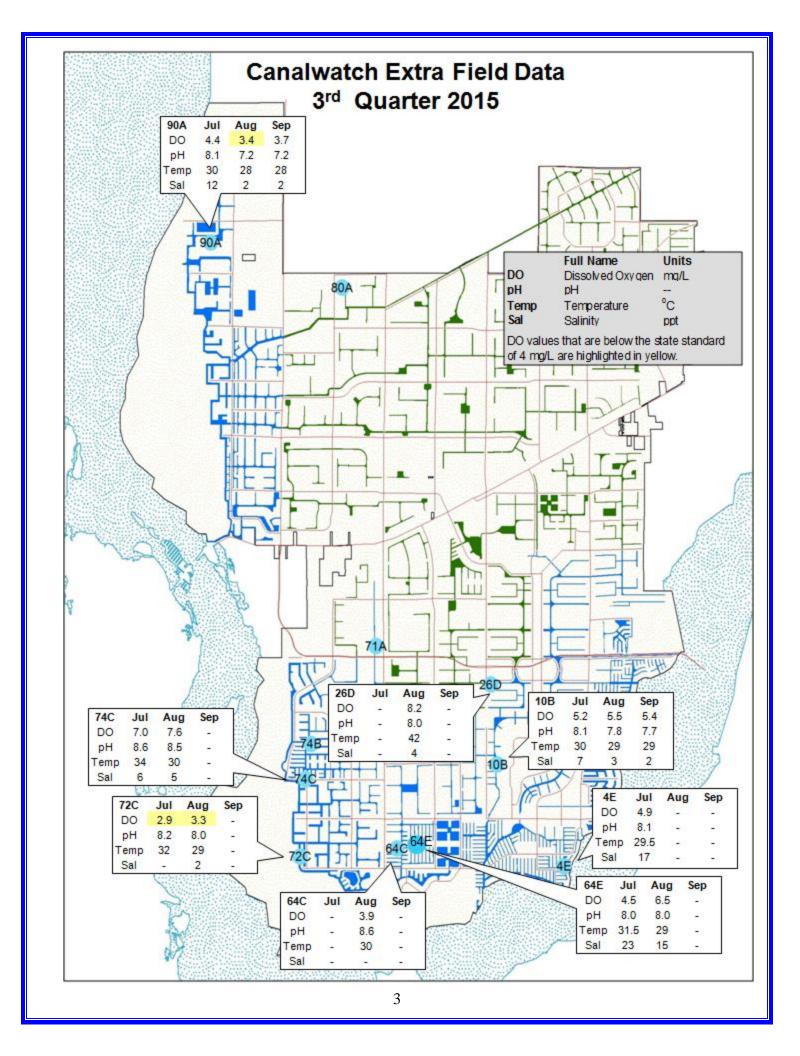
Non native and invasive: that sums up the profile for this "scary" weed. Lantana camara, native to Central and South America, was introduced to North America, Europe and Asia in the mid-1600's by Dutch explorers. Then it was touted as having medicinal uses, today its continued propagation is for landscape ornamental use. Its spread has come with some unwelcome consequences. In Florida, because it's naturalized, it has become a misrepresentation of the native lantana, Lantana depressa. Biologists and ecologists have long known about hybrids between the native and non-native varieties, further worsening the issue. This invasive weed spreads because of its berry like fruit, transported by birds. The fruit and foliage is highly toxic to mammals, and lantana's preference to open sunny areas makes it problematic in pasture lands. Moreover, once established, it often thrives on the fringes of wetlands, hammocks, pine forests and coastal plant communities - areas that are often sensitive or preserved for conservation or wildlife refuges.

1st Annual Mangrove Mania!

On Saturday, September 19th, Over 150 volunteers paddled in kayaks, or was ferried by volunteer boaters to a specified location in Cape Coral's North Spreader Waterway to assist in planting over 10,000 red mangrove seeds. The area was chosen because of recent invasive exotic plant removal. Those invasive plant species (mostly Brazilian pepper and Australian pine) became established in areas where the mangroves were damaged due to Hurricane Charley in 2004.

The planting volunteers were also joined by volunteers tasked with litter pick up for the 2015 Coastal Cleanup. Both events were organized by the Keep Lee County Beautiful. Gulf Coast Kayak Club, Captain Jack's Boat Tours, and Cape Coral Police Marine division where there to be sure volunteers had a way to get to the site, and were safe during the event. Many families and school groups and social clubs participated, including 4H of Lee County, and the Northwest Homeowners Association. Dave Scott of Marine Forest Research and Dr. Terry Tatter, a microbiologist from the University of Massachusetts Amherst collected the mangrove seeds prior to the Mangrove Mania event and distributed them to volunteers the day of.

The volunteers were provided lunch from Tropical Smoothie Café after the plantings and litter pick up was complete.


Dave Scott and Dr. Tatter will re-visit the site often over the coming months to measure the success of the project. This is the first annual Mangrove Mania and Keep Lee County Beautiful plans to host more events like these in the coming years, targeting other areas in Lee County where mangrove restoration is needed.

Why are Mangroves Important?

- Mangrove plant communities stabilize the shoreline and buttress coastal development from winds and storm surge associated with tropical weather.
- Mangroves buffer excess nutrients associated with stormwater runoff.
- Red mangrove root structures provide nursery grounds for juvenile fish species. This includes important game species such as snook, tarpon, redfish and mullet.
- Red mangrove root structures also provide substrate for barnacles and oysters to adhere to. Two important shell fish communities for fisheries and also for water quality. Barnacles and oysters filter feed on algae and other particulate matter.
- Mangrove communities provide rookery habitat for a variety of coastal, in-shore and song birds.

	bd = be	low dete	ection		benchr	nark num	bers: M	arked d	ata are i	in the hig	jhest 20	% of valu	ues foun	d by Ha	nd et. al	, 1988.				
	July 2015						August 2015							September 2015						
	NO2	NO3	NH3	TKN	T-N	T-P04	NO2	NO3	NH3	TKN	T-N	T-P04	NO2	NO3	NH3	TKN	T-N	T-P04	Avg	
	<1.0	<1.0	none	e set	<2.0	<0.46	<1.0	<1.0	none	e set	<2.0	<0.46	<1.0	<1.0	none	e set	<2.0	<0.46	TSI	
3F													bd	bd	0.05	0.7	0.7	0.05	51.09	
4E	bd	bd	0.05	0.8	0.8	0.09													51.58	
5D	bd	bd	0.05	0.8	1.0	0.07	bd	bd	0.05	0.6	0.6	0.06	bd	0.06	0.05	0.8	0.86	0.08	54.76	
6F	bd	bd	0.05	1.0	0.8	0.11	bd	bd	0.05	0.6	0.6	0.11	bd	0.05	0.05	1.1	1.15	0.17	51.87	
9F	bd	bd	0.05	0.8	0.1	0.09	bd	bd	0.05	0.6	0.6	0.08	bd	bd	0.05	1.1	1.1	0.09	55.24	
10B	bd	bd	0.05	0.1	1.1	0.04	bd	bd	0.05	0.4	0.4	0.05	bd	0.05	0.05	0.7	0.75	0.04	38.39	
11E	bd	0.05	0.05	1.1	1.15	0.11	bd	bd	0.05	0.7	0.7	0.14	bd	0.16	0.05	1.2	1.36	0.16	57.82	
12H	bd	bd	0.05	0.8	0.4	0.11	bd	bd	0.05	0.7	0.7	0.06	bd	0.17	0.1	1.0	1.17	0.17	51.71	
15F	bd	bd	0.05	0.4	0.0	0.06													55.62	
16E	bd	bd	0.05	0.7	0.7	0.03	bd	bd	0.05	0.7	0.7	0.03	bd	bd	0.05	0.6	0.6	0.03	54.13	
19D							bd	0.07	0.05	0.8	0.87	0.13	bd	0.20	0.05	0.9	1.10	0.16	55.09	
19K	bd	bd	0.05	0.6	0.6	0.11	bd	0.05	0.05	0.7	0.75	0.16	bd	0.11	0.05	1	1.11	0.17	50.45	
21D	bd	bd	0.05	0.6	0.6	0.11	bd	bd	0.05	0.6	0.6	0.07	bd	0.06	0.05	0.9	0.96	0.05	53.47	
211							bd	bd	0.05	0.5	0.5	0.05							67.67	
26D							bd	bd	0.05	0.8	0.8	0.04							59.03	
28D	bd	bd	0.05	0.6	0.6	0.06	bd	bd	0.05	0.5	0.5	0.02	bd	bd	0.05	0.7	0.7	0.02	50.94	
38B	bd	bd	0.05	0.5	0.5	0.04	bd	bd	0.05	0.8	0.8	0.03	bd	bd	0.05	1.0	1.0	0.02	51.25	
41A	bd	bd	0.05	0.1	0.1	0.02	bd	bd	0.05	0.3	0.3	0.01	bd	0.05	0.05	0.8	0.85	0.01	21.04	
41B	bd	bd	0.05	0.1	0.1	0.02	bd	bd	0.05	0.5	0.5	0.02	bd	0.06	0.05	1.0	1.06	0.02	39.56	
45D	bd	bd	0.05	0.6	0.6	0.02	bd	bd	0.05	0.4	0.4	0.02	bd	bd	0.05	0.4	0.4	0.01	41.71	
48A							bd	bd	0.05	0.4	0.4	0.01							35.40	
52B	bd	bd	0.05	bd	bd	0.02	bd	bd	0.05	0.4	0.4	0.01							26.43	
58B													bd	0.06	0.05	0.8	0.86	0.03	45.80	
581	bd	bd	0.05	0.9	0.9	0.02	bd	bd	0.05	0.6	0.6	0.03	bd	0.05	0.05	0.9	0.95	0.02	44.06	
58J	bd	bd	0.05	0.9	0.9	0.02	bd	bd	0.05	0.6	0.6	0.02							46.01	

59B 59C 64B 64C	bd bd bd	bd bd bd	0.05 0.05 0.05	0.8 0.6 0.9	0.8 0.6 0.9	0.01 0.01 0.06	bd bd bd	bd bd bd	0.05 0.05 0.05	0.5 0.6 0.5	0.5 0.6 0.5	0.02 0.03 0.07	bd	bd	0.05	0.7	0.7	0.02	42.93 40.76 55.83 42.28
64E	bd	bd	0.05	0.8	0.8	0.05	bd	bd	0.05	0.5	0.5	0.06	bd	0.15	0.1	0.8	0.95	0.11	51.64
65C	bd	bd	0.05	0.9	0.9	0.05	bd	bd	0.05	0.9	0.9	0.06	bd	0.08	0.2	0.8	0.88	0.07	55.67
70G 72C	bd bd	bd bd	0.05 0.05	0.2	0.2	0.05 0.05	bd	bd	0.05	0.7	0.7	0.07	bd	bd	0.05	0.7	0.7	0.05	40.65
74C	bd bd	bd	0.05	0.4	0.4	0.05	bd bd	bd bd	0.05	0.7	0.7	0.07							52.43 45.70
82A	bd	bd	0.05	1.0	1.0	0.04	bd	bd	0.05	1.2	1.2	0.03	bd	0.06	0.05	0.9	0.96	0.05	55.77
83C	bd	bd	0.05	1.0	1.0	0.02	bd	bd	0.05	0.7	0.7	0.01	bd	bd	0.1	0.5	0.5	0.03	46.59
89A	bd	bd	0.05	1.3	1.3	0.11	bd	bd	0.05	1.1	1.1	0.14	bd	0.17	0.2	1.2	1.37	0.18	65.44
90A	bd	bd	0.05	1.6	1.6	0.02	bd	bd	0.05	1.4	1.4	0.02	bd	bd	0.2	1.4	1.4	0.02	47.44
93C	bd	bd	0.05	0.5	0.5	0.07	bd	bd	0.05	0.7	0.7	0.12	bd	bd	0.05	0.7	0.7	0.08	31.40
Median		0.05	0.05	0.80	0.70	0.05		bd	0.05	0.60	0.60	0.05		bd	0.05	0.80	0.95	0.05	51.09
Max		0.05	0.05	1.60	1.60	0.11		0.07	0.05	1.40	1.40	0.16		0.20	0.20	1.40	1.40	0.18	67.67
	Nitrite (ind Nitrate (ind		Nitroge TN =	= Total Kjø n (organic : Total Nitr ganic + org	+ NH4) ogen	can in runoff septic	dicate the or efflue system	ne prese ent from s. Exce	s in our on nce of fe wastewa	rtilizer ter or trients		37 sites FAIR (6	this qua 0-70), ar	arter sco nd zero	red as C scored f	ck indica GOOD (< POOR (x	:60). 2 si •70).	ites sco	red
	Nitrate (in	organic)	Nitroge TN = (inorg	n (organic : Total Nitr	+ NH4) ogen janic)	can in runoff septic	dicate the or efflue system od to nui	ne prese ent from s. Exce	nce of fe wastewa ssive nu lant grow	rtilizer ter or trients		37 sites FAIR (61 Rainfall increas relative	this qua 0-70), ar has be ed fresh ly health	arter sco nd zero en preva water in ny. Thera	red as C scored f alent this flows the e has be	GOOD (<	:60). 2 si >70). . But des have re e instanc	ites sco spite the mained ces of d	red

October

7th Canalwatch

14th Florida "101" Seminar

1 pm

Rotary Park Info: 549-4606

21st Guided Tour of

Eco Preserve 9 am - 11 am Info: 549-4606

23rd Guided Paddle of

Matlacha Pass 9 am - 11 am Info: 549-4606

24th Fall Kids Festival

10:00 am Jaycee Park 25th Adam Strongin Kids Fishing Tournament Yacht Club Pier 7:00 am Info at 691-3091

27th Full Moon Guided Paddle At Eco Park/Four Mile Cove 6:30 – 9:30 Info: 549-4606

November

4th Canalwatch (at Rotary Park)

9th Reptiles Seminar

-Turtles!

Rotary Park 1 pm - 2 pm

Info: 549-4606

13th Guided Tour of Yellow Fever Creek 9 am - 11 am Info: 549-4606 19th Fishing in the Waterfront Wonderland Seminar Rotary Park 2 pm Info: 549-4606

December

2nd Canalwatch

11th Guided Tour of Yellow Fever Creek 9 am - 11 am Info: 549-4606

17th Coyotes Seminar Rotary Park 2 pm Info: 549-4606

Please RSVP for the November Event by October 30th at 242-3547 or kmcbride@capecoral.net The November Event will be held at Rotary Park on November 4th.

City of Cape Coral Environmental Resources P.O. Box 150027 Cape Coral, FL 33915-0027